Curriculum Vitae

Dr. Supriya Chakrabarti

Qualification: Ph.D. (Materials Science)

Designation: Scientist

1 Contact Information

Center for Carbon Materials, ARCI, Hyderabad Ph: +91-40-24452543 Mobile: +91-9123340688 Email: <u>supriya.c@arci.res.in</u>, <u>supriyac79@gmail.com</u>

2 Relevant Professional Experience

- 2017 (September) till now Scientist at ARCI, Hyderabad, India
- 2015 (December) 2017 (August) Research Associate at Ulster University, UK Project: Advanced Nanotube Application and Manufacturing Initiative (ANAM)-Cambridge University and Ulster University funded by EPSRC
- 2015 (March) 2015 (December) Postdoctoral fellow at University of RomaTre, Italy Project: Bridging high strength and dissipation in carbon nanotube (CNT) composites funded by AFOSR, USA
- 2011 (January) 2015 (February) R&D Manager at iHawk Solution, India Project: CVD equipment development and CNT based structural material development
- 2008 (February) 2010 (April) Postdoctoral fellow at University of Cincinnati, USA Project: Growth of vertically aligned mm long carbon nanotubes using thermal catalytic Chemical Vapor Deposition technique and optimization of CNT density to make high strength CNT yarns.
- 2007 (May) 2008 (February) Postdoctoral fellow at University of Dayton, USA Project: Structural evaluation of super long carbon nanotubes using electrochemical characterization and Raman spectroscopy.

- 2005 (July) 2007 (March)
 Postdoctoral fellow at Osaka Science & Technology Center, Japan
 Project: Creating Nanocarbon Application Technology funded by Japan science and technology agency.
- 2004 (October) 2005 (June)
 Postdoctoral fellow at Osaka Prefecture University, Japan
 Project: Development of field emission device using vertically aligned carbon nanotubes grown by CVD technique.

3 Educational qualifications

• 2000 - 2004

PhD, Material Science Dept., Indian Association for The Cultivation of Science, Kolkata Thesis Supervisors: Prof. Subhadra Chaudhuri (Late) and Dr. Dibyendu Ganguli PhD Thesis: **Preparation and Characterization of Some Sol-Gel Derived Oxide Films**

- 1998 2000 Master of Science in Physics, Jadavpur University, Kolkata
- 1995 1998 Bachelor of Science (Physics Honours), Jadavpur University, Kolkata

List of Publications

An updated list of publication **(Total Number is 43)** is available on my Google Scholar page at the following location: <u>http://scholar.google.co.in/citations?user=9cZ8UW8AAAAJ&hl=en</u>

Patent

Patent Title: Process for producing carbon nanostructure and gas for carbon nanostructure production

Inventors: Supriya Chakrabarti, Yoshikazu Nakayama, Lujun Pan, Takeshi Nagasaka, Toru Sakai, Publication date: 2008/1/18, Patent office: WO, Patent number: 2008007750

4 Important Conferences Attended:

- MRS Fall 2017 & CSCST 2017
- Invited speaker 231st ECS conference, 2017 at New Orleans, USA
- Poster presentation at International Conference on Plasmas with Liquids (ICPL 2017), Prague, Czech Republic, 5th-9th March 2017
- Invited speaker RAPID WROKSHOP, 2016 at VITO, Belgium

- Poster presentation at The Japan Carbon Fiber Manufacturers Association, 20th Composite Material Seminar, Japan, 2007
- Oral presentation at the 4th Korea-Japan Symposium, Japan, 2006.
- Poster presentation at the NT06: Seventh International Conference on the Science and Application of Nanotubes, Nagano, Japan, June 2006.
- Oral presentation at the IDW/AD'05 "12th International Display Workshops in conjunction with Asia Display 2005", Japan, December 2005.
- Poster presentation at the 29th Fullerene-Nanotubes General Symposium 2005; Japan 2005.
- Poster presentation at the International conference on nanoscience and technology; Kolkata, India December 2003.
- Poster presentation at the National Conference of Nano-Materials; Kolkata, India, March 2003
- Poster presentation at the Conference "India and Abroad- III: A Conference on Condensed Matter Physics" Kolkata, India, January 2003.
- Poster presentation at the National Conference "Frontier Research on Advanced Matter Physics" Kolkata, India, 2002.

5 Awards and Honors:

- Received **NEDO** (New Energy and Industrial Technology Development Organization) fellowship of Japan.
- Received ICTP (International Center for Theoretical Physics) fellowship of Italy.
- Received National Renewable Energy Fellowship for progressing research work.
- Received **Best Poster Award** in the "Synthesize and Characterization" category in the National Conference of Nano-Materials, 6-7 th march 2003 organized by W. B. A. S. T and M. R. S. I.
- Elected as **Distinguished Referee** for the Journal; Applied Physics Letter and Journal of Applied Physics, www.aip.org and many more

6 Research Experience and Skills:

6.1 Technical Writing

Project proposal and report writing for funding agencies like DAE, NSF and AFOSR.

6.2 Equipment Setup

CVD Equipment development for growing super long cm long vertically aligned single wall and multi wall carbon nanotubes on different substrates (Designed and developed in Japan and USA)

Setup of floating catalyst based CVD process equipment development for spinning/winding continuous carbon nanotube fiber and mat (Developed in UK)

Development of high vacuum field emission measurement setup for Carbon nanotubes and other nanostructure materials (Designed and developed in Japan)

Development of atmospheric pressure plasma setup in gas phase and liquid phase for synthesizing and surface modifications of quantum confined nano-materials. (Developed in UK)

6.3 Expertise

Materials dealt with: Carbon Nanotubes, Graphene, Semiconducting (II-VI) oxide and sulphide thin films, Magnetic nanoparticles, Oxide nano-composites, One-dimensional and two-dimensional nanostructures (II-VI and III-V semiconducting nanowires, nanoribbons etc.).

Synthesis techniques: RF and DC sputtering, Electron beam evaporation, Chemical vapor deposition (CVD), Plasma enhanced chemical vapor deposition (PECVD), Vapor-Liquid-Solid technique, Sol-Gel technique and Wet Chemical synthesis technique.

Materials and Device Characterization techniques:

•Scanning Electron Microscopy (FESEM and ESEM), High-Resolution Transmission Electron Microscopy (HRTEM), EELS (Electron energy loss spectroscopy), Atomic Force Microscopy (AFM) and Optical Microscopy.

•UV-VIS-NIR Spectrophotometry, FTIR, Optical Infrared Spectroscopy, Photoluminescence, Electroluminescence and Photoconductivity.

• Micro-Raman Spectroscopy, X-ray Diffraction, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA).

•Low-temperature (4K) Mössbauer Spectroscopy, Magnetization Measurements, Low-temperature (4K) Electron Paramagnetic Resonance Spectroscopy (EPR) and a. c. susceptibility measurements.

•Field-emission measurement, IV characterization, 4-probe electrical conductivity and CV measurements of electronic components.

•Solar simulator and EQE (External quantum efficiency)

Device Fabrication techniques:

•About four years clean room processing experience in Japan and USA.

•Electron-beam lithography, Photolithography, Step-And-Scan Lithography, Mask Making.

• Dry Etching using Plasma Etching (RIE), Deep Silicon Etching and Wet Etching.

•Metrology Tools, Wet Chemical Etching of III-V compounds, silicon dioxide, silicon nitride.

•Thin Film Deposition, Metal Deposition, Rapid Thermal Annealing, and Wire bonding.

• Multilayer solar cell fabrication.

List of Journal Publications:

-	Supriva Chakrabarti			
			All	Since 2012
	Nanotechnology Semiconducting Oxide Nanostructures Carbon Nanotubes Graphene Nanomedicine	Citations h-index i10-index	1572 24 33	789 16 27
TITLE			CITED BY	YEAR
Electrochemis active than the K Gong, S Chakr Angewandte Che	try at carbon nanotube electrodes: Is the nane e sidewall? abarti, L Dai mie International Edition 47 (29), 5446-5450	otube tip more	145	2008
Number of wal brushlike carbo S Chakrabarti, H The Journal of Ph	lls controlled synthesis of millimeter-long verti on nanotubes Kume, L Pan, T Nagasaka, Y Nakayama nysical Chemistry C 111 (5), 1929-1934	ically aligned	120	2007
Optical and fie zinc foils by the A Dev, S Kar, S C Nanotechnology	ld emission properties of ZnO nanorod arrays e solvothermal route Chakrabarti, S Chaudhuri 17 (5), 1533	s synthesized on	108	2006
Surfactant-ass sol-gel-derived A Dev, SK Panda The Journal of Ph	isted route to synthesize well-aligned ZnO na I ZnO thin films , S Kar, S Chakrabarti, S Chaudhuri hysical Chemistry B 110 (29), 14266-14272	anorod arrays on	91	2006
Growth of supe S Chakrabarti, T Japanese journal	er long aligned brush-like carbon nanotubes Nagasaka, Y Yoshikawa, L Pan, Y Nakayama of applied physics 45 (7L), L720		85	2006
Direct synthes evaporation pr T Ghoshal, S Bise Nanotechnology	is of ZnO nanowire arrays on Zn foil by a sim ocess was, S Kar, A Dev, S Chakrabarti, S Chaudhuri 19 (6), 065606	ple thermal	74	2008
Tailoring of roc silica nanocom S Chakrabarti, D Thin Solid Films	om temperature excitonic luminescence in sol nposite films Das, D Ganguli, S Chaudhuri 141 (1), 228-237	–gel zinc oxide–	74	2003
Optical proper spheres S Chakrabarti, D Physica E: Low-d	ties of γ-Fe 2 O 3 nanoparticles dispersed on Ganguli, S Chaudhuri limensional Systems and Nanostructures 24 (3), 333-3	sol–gel silica ³⁴²	64	2004
Substrate depo films S Chakrabarti, D	endence of preferred orientation in sol–gel-de Ganguli, S Chaudhuri	erived zinc oxide	61	2004

Materials letters 58 (30), 3952-3957

TITLE	CITED BY	YEAR
ZnS nanowire arrays: synthesis, optical and field emission properties S Biswas, T Ghoshal, S Kar, S Chakrabarti, S Chaudhuri Crystal Growth and Design 8 (7), 2171-2176	54	2008
Structural evaluation along the nanotube length for super-long vertically aligned double-walled carbon nanotube arrays S Chakrabarti, K Gong, L Dai The Journal of Physical Chemistry C 112 (22), 8136-8139	54	2008
Photoluminescence of ZnO nanocrystallites confined in sol–gel silica matrix S Chakrabarti, D Ganguli, S Chaudhuri Journal of Physics D: Applied Physics 36 (2), 146	54	2002
Spinning yarn from long carbon nanotube arrays C Jayasinghe, S Chakrabarti, MJ Schulz, V Shanov Journal of Materials Research 26 (05), 645-651	47	2011
Morphology dependent field emission from In2O3 nanostructures S Kar, S Chakrabarti, S Chaudhuri Nanotechnology 17 (12), 3058	46	2006
Cobalt doped γ-Fe2O3 nanoparticles: synthesis and magnetic properties S Chakrabarti, SK Mandal, S Chaudhuri Nanotechnology 16 (4), 506	45	2005
Optical and microstructural characterization of CdS–ZnO nanocomposite thin films prepared by sol–gel technique SK Panda, S Chakrabarti, B Satpati, PV Satyam, S Chaudhuri Journal of Physics D: Applied Physics 37 (4), 628	42	2004
Synthesis of β-Ga 2 O 3 nanowire from elemental Ga metal and its photoluminescence study P Guha, S Chakrabarti, S Chaudhuri Physica E: Low-dimensional Systems and Nanostructures 23 (1), 81-85	37	2004
Excitonic and defect related transitions in ZnO–SiO2 nanocomposites synthesized by sol-gel technique S Chakrabarti, D Ganguli, S Chaudhuri physica status solidi (a) 201 (9), 2134-2142	34	2004
Nanotube responsive materials C Jayasinghe, W Li, Y Song, JL Abot, VN Shanov, S Fialkova, MRS bulletin 35 (09), 682-692	32	2010
Fabrication of GaN nanowires and nanoribbons by a catalyst assisted vapor– liquid–solid process S Biswas, S Kar, T Ghoshal, VD Ashok, S Chakrabarti, S Chaudhuri Materials research bulletin 42 (3), 428-436	30	2007
Enhancement of UV luminescence in sol-gel prepared ZnO thin films by incorporation of Mg S Chakrabarti, S Kar, A Dev, S Chaudhuri physica status solidi (a) 202 (3), 441-448	28	2005

11/27/2017

TITLE		YEAR
Growth of aligned multiwalled carbon nanotubes on bulk copper substrates by chemical vapor deposition G Li, S Chakrabarti, M Schulz, V Shanov Journal of Materials Research 24 (09), 2813-2820	27	2009
Optical transmission and photoluminescence studies of ZnO–MgO nanocomposite thin films S Das, S Chakrabarti, S Chaudhuri Journal of Physics D: Applied Physics 38 (22), 4021	27	2005
Positron annihilation lifetime changes across the structural phase transition in nanocrystalline Fe 2 O 3 S Chakrabarti, S Chaudhuri, PMG Nambissan Physical Review B 71 (6), 064105	25	2005
Microstructural and photoluminescent characterization of one-dimensional ZnO nanostructures prepared by catalyst-assisted vapour–liquid–solid technique S Chakrabarti, S Chaudhuri Materials chemistry and physics 87 (1), 196-200	23	2004
Preparation of hydroxide-free magnesium oxide films by an alkoxide-free sol- gel technique S Chakrabarti, D Ganguli, S Chaudhuri Materials Letters 57 (29), 4483-4492	20	2003
Effect of MgO coating on field emission of a stand-alone carbon nanotube L Pan, Y Konishi, H Tanaka, S Chakrabarti, S Hokushin, S Akita, Journal of Vacuum Science & Technology B 25 (5), 1581-1583	18	2007
Stable field emission property of patterned MgO coated carbon nanotube arrays S Chakrabarti, L Pan, H Tanaka, S Hokushin, Y Nakayama Japanese Journal of Applied Physics 46 (7R), 4364	18	2007
Synthesis of\ mathsf {\ gamma}-Fe\ mathsf {_2} O\ mathsf {_3} nanoparticles coated on silica spheres: Structural and magnetic properties S Chakrabarti, SK Mandal, BK Nath, D Das, D Ganguli, S Chaudhuri The European Physical Journal B-Condensed Matter and Complex Systems 34 (2	18	2003
Synthesis of\ mathsf {\ gamma}-Fe\ mathsf {_2} O\ mathsf {_3} nanoparticles coated on silica spheres: Structural and magnetic properties S Chakrabarti, SK Mandal, BK Nath, D Das, D Ganguli, S Chaudhuri The European Physical Journal B-Condensed Matter and Complex Systems 34 (2	18	2003
The effect of substrate positions in chemical vapor deposition reactor on the growth of carbon nanotube arrays G Li, S Chakrabarti, M Schulz, V Shanov Carbon 48 (7), 2111-2115	17	2010
Crystalline magnesium oxide films on soda lime glass by sol–gel processing S Chakrabarti, D Ganguli, S Chaudhuri, AK Pal Materials Letters 54 (2), 120-123	17	2002

TITLE	CITED BY	YEAR
Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor Y Honda, M Takeshige, H Shiozaki, T Kitamura, K Yoshikawa, Journal of Power Sources 185 (2), 1580-1584	15	2008
Electrochemistry at Carbon Nanotube Electrodes: Is the Nanotube Tip More Active Than the Sidewall? This work was supported financially by WBI (PIA FA8652-03-3 K Gong, S Chakrabarti, L Dai Angewandte Chemie-German Edition 120 (29), 5526	11	2008
Optical properties of Mg0. 05Zn0. 95O/SiO2 nanocomposite films prepared by sol–gel technique A Dev, S Chakrabarti, S Kar, S Chaudhuri Journal of Nanoparticle Research 7 (2-3), 195-201	y 8	2005
Structure and Optical Properties of Carbon Nanoparticles Generated by Laser Treatment of Graphite in Liquids PDM Natalie Tarasenka, Dr. Aleksandr Stupak, Prof. Dr. Nikolai Tarasenko, Dr Chem Phys Chem 18	r 2	* 2017
Photoluminescence and Raman Study of CdSAl2O3 Nanocomposite Films Prepared by SolGel Techniques SK Panda, S Chakrabarti, A Ganguly, S Chaudhuri Journal of nanoscience and nanotechnology 5 (3), 459-465	1	2005
SYNTHESIS OF SILICON CARBIDE NANOPARTICLES BY PLASMA- ASSISTED TECHNIQUES IN LIQUIDS NN Tarasenka, AA Nevar, AV Butsen, NV Tarasenko, NV Rzheutski, Physics, Chemistry and Application of Nanostructures: Reviews and Short		2017
PROCESS FOR PRODUCING CARBON NANOSTRUCTURE AND GAS FOR CARBON NANOSTRUCTURE PRODUCTION S CHAKRABARTI, Y NAKAYAMA, L PAN, T NAGASAKA, T SAKAI WO Patent 2,008,007,750		2008
über umlagerungs-reaktionen in der kohlenhydrat-gruppe, iv. mitteil.: zur kinetik der umlagerung der 3-acetyl-monoaceton-glucose K Gong, S Chakrabarti, L Dai Berichte der deutschen chemischen Gesellschaft (A and B Series)		2006
Synthesis and Characterization of Sol-Gel Derived Cu Doped ZnO Films S Ray, S Chakrabarti, S Bhattacharya, S Chaudhuri Transactions of the Indian Ceramic Society 64 (3), 133-136		2005
Field Emission Properties of MgO Coated Multiwalled Aligned CNTs S CHAKRABARTI, L PAN, H TANAKA, Y NAKAYAMA Proc Int Disp Workshops 2, 1667-1670		2005

TITLE	CITED BY	YEAR
Structure, structural phase transitions, mechanical properties, defects-Positro annihilation lifetime changes across the structural phase transition in nanocrystalline S Chakrabarti, S Chaudhuri, PMG Nambissan Physical Review-Section B-Condensed Matter 71 (6), 64105-64105	n	2005
; Effect of MgO coating on the field emission property of aligned multiwalled carbon nanotubes S CHAKRABARTI, L PAN, H TANAKA, Y NAKAYAMA Abstracts. Fullerene, Nanotubes General Symposium 29, 193		2005
Structural and magnetic properties of gamma-Fe2O3 nanoparticles coated or silica spheres S Chakrabarti, D Ganguli, SK Mandal, S Chaudhuri INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE	1	2004
POSITIONS EFFECT IN A CVD REACTOR ON THE GROWTH OF ALIGNED CARBON NANOTUBES V Shanov, G Li, S Chakrabarti, M Schulz	D	
Luminescence in Sol-Gel Derived ZnO/SiO 2 and ZnO/Al 2 O 3		

Nanocomposite Films S Chakrabarti, D Ganguli, S Chaudhuri