Overview
Detonation spray coating (DSC) technology relies on the controlled explosion of oxy-fuel mixture for heating and acceleration of powder particles leading to formation of thicker coatings.

With an objective of enhancing the efficiency, productivity and reliability, the detonation frequency of the existing DSC system has been increased (more than 3Hz). Modification of existing mixing chamber, elimination of numerous mechanically moving parts such as cam, gear, piston, roller, bearings, re-engineering of solenoid valves, flashback arresters, mass flow controller, PLC computer controlled system have been successfully accomplished.

Key Features
- Less maintenance: absence of mechanically moving parts
- Adhesion strength (>10000 psi) and dense microstructure (< 1%)
- Negligible thermal degradation and excellent tribological properties
- Lower substrate temperature & low oxide content
- Coatings with 50-2000 microns thickness can be produced

Applications
- Steel industry application such as Bridle rolls
- Textile & paper industry applications - wire passing pulleys, plungers, steeped cone pulleys etc.
- Gas compressor applications such as spindle valve, compressor disc or shaft
- Strategic applications like HP & LP turbine blades, compressor discs, LCA nozzles, thrust bearing sleeves, propeller shaft seals.
- Power and energy applications such as guide vanes, hydro turbine blades.

Technology Status
- Commercially proven, successfully transferred & implemented technology
- Completed necessary tests for evaluating the equipment performance
- R&D was carried out for deposition of advanced materials for new strategic & industrial applications
- Technology is ready for transfer

*Intellectual Property Development Indices

<table>
<thead>
<tr>
<th>IPDI</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities</td>
<td>Basic concepts and understanding of underlying scientific principles</td>
<td>Shortlisting possible applications</td>
<td>Research to prove technical feasibility for targeted application</td>
<td>Coupon level testing in stimulated conditions</td>
<td>Check repeatability/consistency at coupon level</td>
<td>Prototype testing in real-life conditions</td>
<td>Check repeatability/consistency at prototype level</td>
<td>Reassessing feasibility (IP, competition technology, commercial)</td>
<td>Initiate technology transfer</td>
<td>Support in stabilizing production</td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
</tbody>
</table>

Detonation Spray System

Detonation Spray Coated LPC III Modules for Naval Aircraft

DSC Coated Industrial Components

Materials for DSC

<table>
<thead>
<tr>
<th>Metals</th>
<th>Mo, Ni, Cr, Fe, Cr</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Oxides</th>
<th>Al2O3, TiO2, Al2O3-TiO2, Cr2O3-Al2O3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Carbides</th>
<th>WC-Co-Cr, WC-Co-NiCr, WC-Co, WC-Ni-Cr</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Ni-Cr, Al-Si, IN718</th>
</tr>
</thead>
</table>

Detonation Spray Coating Technology
Centre for Engineered Coatings
International Advanced Research Centre for Powder Metallurgy and New Materials
Balapur PO, Hyderabad-500 005, India

Overview
Detonation spray coating (DSC) technology relies on the controlled explosion of oxy-fuel mixture for heating and acceleration of powder particles leading to formation of thicker coatings.

With an objective of enhancing the efficiency, productivity and reliability, the detonation frequency of the existing DSC system has been increased (more than 3Hz). Modification of existing mixing chamber, elimination of numerous mechanically moving parts such as cam, gear, piston, roller, bearings, re-engineering of solenoid valves, flashback arresters, mass flow controller, PLC computer controlled system have been successfully accomplished.

Key Features
- Less maintenance: absence of mechanically moving parts
- Adhesion strength (>10000 psi) and dense microstructure (< 1%)
- Negligible thermal degradation and excellent tribological properties
- Lower substrate temperature & low oxide content
- Coatings with 50-2000 microns thickness can be produced

Applications
- Steel industry application such as Bridle rolls
- Textile & paper industry applications - wire passing pulleys, plungers, steeped cone pulleys etc.
- Gas compressor applications such as spindle valve, compressor disc or shaft
- Strategic applications like HP & LP turbine blades, compressor discs, LCA nozzles, thrust bearing sleeves, propeller shaft seals.
- Power and energy applications such as guide vanes, hydro turbine blades.

Technology Status
- Commercially proven, successfully transferred & implemented technology
- Completed necessary tests for evaluating the equipment performance
- R&D was carried out for deposition of advanced materials for new strategic & industrial applications
- Technology is ready for transfer

*Intellectual Property Development Indices

<table>
<thead>
<tr>
<th>IPDI</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities</td>
<td>Basic concepts and understanding of underlying scientific principles</td>
<td>Shortlisting possible applications</td>
<td>Research to prove technical feasibility for targeted application</td>
<td>Coupon level testing in stimulated conditions</td>
<td>Check repeatability/consistency at coupon level</td>
<td>Prototype testing in real-life conditions</td>
<td>Check repeatability/consistency at prototype level</td>
<td>Reassessing feasibility (IP, competition technology, commercial)</td>
<td>Initiate technology transfer</td>
<td>Support in stabilizing production</td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
</tbody>
</table>

Detonation Spray System

Detonation Spray Coated LPC III Modules for Naval Aircraft

DSC Coated Industrial Components

Materials for DSC

<table>
<thead>
<tr>
<th>Metals</th>
<th>Mo, Ni, Cr, Fe, Cr</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Oxides</th>
<th>Al2O3, TiO2, Al2O3-TiO2, Cr2O3-Al2O3</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Carbides</th>
<th>WC-Co-Cr, WC-Co-NiCr, WC-Co, WC-Ni-Cr</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Alloys</th>
<th>Ni-Cr, Al-Si, IN718</th>
</tr>
</thead>
</table>

Detonation Spray Coating Technology
Centre for Engineered Coatings
International Advanced Research Centre for Powder Metallurgy and New Materials
Balapur PO, Hyderabad-500 005, India

Overview
Detonation spray coating (DSC) technology relies on the controlled explosion of oxy-fuel mixture for heating and acceleration of powder particles leading to formation of thicker coatings.

With an objective of enhancing the efficiency, productivity and reliability, the detonation frequency of the existing DSC system has been increased (more than 3Hz). Modification of existing mixing chamber, elimination of numerous mechanically moving parts such as cam, gear, piston, roller, bearings, re-engineering of solenoid valves, flashback arresters, mass flow controller, PLC computer controlled system have been successfully accomplished.

Key Features
- Less maintenance: absence of mechanically moving parts
- Adhesion strength (>10000 psi) and dense microstructure (< 1%)
- Negligible thermal degradation and excellent tribological properties
- Lower substrate temperature & low oxide content
- Coatings with 50-2000 microns thickness can be produced

Applications
- Steel industry application such as Bridle rolls
- Textile & paper industry applications - wire passing pulleys, plungers, steeped cone pulleys etc.
- Gas compressor applications such as spindle valve, compressor disc or shaft
- Strategic applications like HP & LP turbine blades, compressor discs, LCA nozzles, thrust bearing sleeves, propeller shaft seals.
- Power and energy applications such as guide vanes, hydro turbine blades.

Technology Status
- Commercially proven, successfully transferred & implemented technology
- Completed necessary tests for evaluating the equipment performance
- R&D was carried out for deposition of advanced materials for new strategic & industrial applications
- Technology is ready for transfer

*Intellectual Property Development Indices

<table>
<thead>
<tr>
<th>IPDI</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activities</td>
<td>Basic concepts and understanding of underlying scientific principles</td>
<td>Shortlisting possible applications</td>
<td>Research to prove technical feasibility for targeted application</td>
<td>Coupon level testing in stimulated conditions</td>
<td>Check repeatability/consistency at coupon level</td>
<td>Prototype testing in real-life conditions</td>
<td>Check repeatability/consistency at prototype level</td>
<td>Reassessing feasibility (IP, competition technology, commercial)</td>
<td>Initiate technology transfer</td>
<td>Support in stabilizing production</td>
</tr>
<tr>
<td>Status</td>
<td></td>
</tr>
</tbody>
</table>